\(\int \cos ^2(c+d x) \cot ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx\) [1162]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 426 \[ \int \cos ^2(c+d x) \cot ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\frac {a \left (20 a^2+759 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{315 b d}+\frac {\left (20 a^2+469 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{315 b d}+\frac {\left (4 a^2+63 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{5/2}}{63 a b d}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{7/2}}{9 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{7/2}}{a d}-\frac {\left (20 a^4+1689 a^2 b^2-168 b^4\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{315 b^2 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {a \left (20 a^4+739 a^2 b^2+816 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{315 b^2 d \sqrt {a+b \sin (c+d x)}}+\frac {5 a^2 b \operatorname {EllipticPi}\left (2,\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{d \sqrt {a+b \sin (c+d x)}} \]

[Out]

1/315*(20*a^2+469*b^2)*cos(d*x+c)*(a+b*sin(d*x+c))^(3/2)/b/d+1/63*(4*a^2+63*b^2)*cos(d*x+c)*(a+b*sin(d*x+c))^(
5/2)/a/b/d-2/9*cos(d*x+c)*(a+b*sin(d*x+c))^(7/2)/b/d-cot(d*x+c)*(a+b*sin(d*x+c))^(7/2)/a/d+1/315*a*(20*a^2+759
*b^2)*cos(d*x+c)*(a+b*sin(d*x+c))^(1/2)/b/d+1/315*(20*a^4+1689*a^2*b^2-168*b^4)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^
(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^
(1/2)/b^2/d/((a+b*sin(d*x+c))/(a+b))^(1/2)-1/315*a*(20*a^4+739*a^2*b^2+816*b^4)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^
(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))
/(a+b))^(1/2)/b^2/d/(a+b*sin(d*x+c))^(1/2)-5*a^2*b*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*
x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/d/(a+b*sin(d
*x+c))^(1/2)

Rubi [A] (verified)

Time = 1.01 (sec) , antiderivative size = 426, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {2973, 3128, 3138, 2734, 2732, 3081, 2742, 2740, 2886, 2884} \[ \int \cos ^2(c+d x) \cot ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\frac {\left (4 a^2+63 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{5/2}}{63 a b d}+\frac {\left (20 a^2+469 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{315 b d}+\frac {a \left (20 a^2+759 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{315 b d}+\frac {5 a^2 b \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}+\frac {a \left (20 a^4+739 a^2 b^2+816 b^4\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{315 b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {\left (20 a^4+1689 a^2 b^2-168 b^4\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{315 b^2 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{7/2}}{9 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{7/2}}{a d} \]

[In]

Int[Cos[c + d*x]^2*Cot[c + d*x]^2*(a + b*Sin[c + d*x])^(5/2),x]

[Out]

(a*(20*a^2 + 759*b^2)*Cos[c + d*x]*Sqrt[a + b*Sin[c + d*x]])/(315*b*d) + ((20*a^2 + 469*b^2)*Cos[c + d*x]*(a +
 b*Sin[c + d*x])^(3/2))/(315*b*d) + ((4*a^2 + 63*b^2)*Cos[c + d*x]*(a + b*Sin[c + d*x])^(5/2))/(63*a*b*d) - (2
*Cos[c + d*x]*(a + b*Sin[c + d*x])^(7/2))/(9*b*d) - (Cot[c + d*x]*(a + b*Sin[c + d*x])^(7/2))/(a*d) - ((20*a^4
 + 1689*a^2*b^2 - 168*b^4)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(315*b^2*d*S
qrt[(a + b*Sin[c + d*x])/(a + b)]) + (a*(20*a^4 + 739*a^2*b^2 + 816*b^4)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(
a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(315*b^2*d*Sqrt[a + b*Sin[c + d*x]]) + (5*a^2*b*EllipticPi[2, (c -
 Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(d*Sqrt[a + b*Sin[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2973

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 1)/(a*d*f*(n + 1))), x] +
 (Dist[1/(a*b*d*(n + 1)*(m + n + 4)), Int[(a + b*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n + 1)*Simp[a^2*(n + 1)*(n
+ 2) - b^2*(m + n + 2)*(m + n + 4) + a*b*(m + 3)*Sin[e + f*x] - (a^2*(n + 1)*(n + 3) - b^2*(m + n + 3)*(m + n
+ 4))*Sin[e + f*x]^2, x], x], x] - Simp[Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 2)/(b
*d^2*f*(m + n + 4))), x]) /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m
, 2*n]) &&  !m < -1 && LtQ[n, -1] && NeQ[m + n + 4, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3128

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e
+ f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*
x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n +
2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{7/2}}{9 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{7/2}}{a d}-\frac {2 \int \csc (c+d x) (a+b \sin (c+d x))^{5/2} \left (-\frac {45 b^2}{4}+\frac {11}{2} a b \sin (c+d x)+\frac {1}{4} \left (4 a^2+63 b^2\right ) \sin ^2(c+d x)\right ) \, dx}{9 a b} \\ & = \frac {\left (4 a^2+63 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{5/2}}{63 a b d}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{7/2}}{9 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{7/2}}{a d}-\frac {4 \int \csc (c+d x) (a+b \sin (c+d x))^{3/2} \left (-\frac {315 a b^2}{8}+\frac {87}{4} a^2 b \sin (c+d x)+\frac {1}{8} a \left (20 a^2+469 b^2\right ) \sin ^2(c+d x)\right ) \, dx}{63 a b} \\ & = \frac {\left (20 a^2+469 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{315 b d}+\frac {\left (4 a^2+63 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{5/2}}{63 a b d}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{7/2}}{9 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{7/2}}{a d}-\frac {8 \int \csc (c+d x) \sqrt {a+b \sin (c+d x)} \left (-\frac {1575}{16} a^2 b^2+\frac {3}{8} a b \left (155 a^2-28 b^2\right ) \sin (c+d x)+\frac {3}{16} a^2 \left (20 a^2+759 b^2\right ) \sin ^2(c+d x)\right ) \, dx}{315 a b} \\ & = \frac {a \left (20 a^2+759 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{315 b d}+\frac {\left (20 a^2+469 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{315 b d}+\frac {\left (4 a^2+63 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{5/2}}{63 a b d}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{7/2}}{9 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{7/2}}{a d}-\frac {16 \int \frac {\csc (c+d x) \left (-\frac {4725}{32} a^3 b^2+\frac {3}{16} a^2 b \left (475 a^2-492 b^2\right ) \sin (c+d x)+\frac {3}{32} a \left (20 a^4+1689 a^2 b^2-168 b^4\right ) \sin ^2(c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx}{945 a b} \\ & = \frac {a \left (20 a^2+759 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{315 b d}+\frac {\left (20 a^2+469 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{315 b d}+\frac {\left (4 a^2+63 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{5/2}}{63 a b d}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{7/2}}{9 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{7/2}}{a d}+\frac {16 \int \frac {\csc (c+d x) \left (\frac {4725 a^3 b^3}{32}+\frac {3}{32} a^2 \left (20 a^4+739 a^2 b^2+816 b^4\right ) \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx}{945 a b^2}-\frac {\left (20 a^4+1689 a^2 b^2-168 b^4\right ) \int \sqrt {a+b \sin (c+d x)} \, dx}{630 b^2} \\ & = \frac {a \left (20 a^2+759 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{315 b d}+\frac {\left (20 a^2+469 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{315 b d}+\frac {\left (4 a^2+63 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{5/2}}{63 a b d}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{7/2}}{9 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{7/2}}{a d}+\frac {1}{2} \left (5 a^2 b\right ) \int \frac {\csc (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx+\frac {\left (a \left (20 a^4+739 a^2 b^2+816 b^4\right )\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx}{630 b^2}-\frac {\left (\left (20 a^4+1689 a^2 b^2-168 b^4\right ) \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{630 b^2 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \\ & = \frac {a \left (20 a^2+759 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{315 b d}+\frac {\left (20 a^2+469 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{315 b d}+\frac {\left (4 a^2+63 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{5/2}}{63 a b d}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{7/2}}{9 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{7/2}}{a d}-\frac {\left (20 a^4+1689 a^2 b^2-168 b^4\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{315 b^2 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\left (5 a^2 b \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {\csc (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \sin (c+d x)}}+\frac {\left (a \left (20 a^4+739 a^2 b^2+816 b^4\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{630 b^2 \sqrt {a+b \sin (c+d x)}} \\ & = \frac {a \left (20 a^2+759 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{315 b d}+\frac {\left (20 a^2+469 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{315 b d}+\frac {\left (4 a^2+63 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^{5/2}}{63 a b d}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{7/2}}{9 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{7/2}}{a d}-\frac {\left (20 a^4+1689 a^2 b^2-168 b^4\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{315 b^2 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {a \left (20 a^4+739 a^2 b^2+816 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{315 b^2 d \sqrt {a+b \sin (c+d x)}}+\frac {5 a^2 b \operatorname {EllipticPi}\left (2,\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{d \sqrt {a+b \sin (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.65 (sec) , antiderivative size = 496, normalized size of antiderivative = 1.16 \[ \int \cos ^2(c+d x) \cot ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\frac {-\frac {2 i \left (-20 a^4-1689 a^2 b^2+168 b^4\right ) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right ) \sec (c+d x) \sqrt {-\frac {b (-1+\sin (c+d x))}{a+b}} \sqrt {\frac {b (1+\sin (c+d x))}{-a+b}}}{a b^2 \sqrt {-\frac {1}{a+b}}}+\frac {8 a b \left (475 a^2-492 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{\sqrt {a+b \sin (c+d x)}}+\frac {2 \left (20 a^4-1461 a^2 b^2-168 b^4\right ) \operatorname {EllipticPi}\left (2,\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{\sqrt {a+b \sin (c+d x)}}-\sqrt {a+b \sin (c+d x)} \left (\left (40 a^3-2202 a b^2\right ) \cos (c+d x)+2 b \left (-95 a b \cos (3 (c+d x))+630 a^2 \cot (c+d x)+\left (150 a^2-119 b^2-35 b^2 \cos (2 (c+d x))\right ) \sin (2 (c+d x))\right )\right )}{1260 b d} \]

[In]

Integrate[Cos[c + d*x]^2*Cot[c + d*x]^2*(a + b*Sin[c + d*x])^(5/2),x]

[Out]

(((-2*I)*(-20*a^4 - 1689*a^2*b^2 + 168*b^4)*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*S
in[c + d*x]]], (a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (
a + b)/(a - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (a + b)/(a
- b)]))*Sec[c + d*x]*Sqrt[-((b*(-1 + Sin[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Sin[c + d*x]))/(-a + b)])/(a*b^2*Sq
rt[-(a + b)^(-1)]) + (8*a*b*(475*a^2 - 492*b^2)*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Si
n[c + d*x])/(a + b)])/Sqrt[a + b*Sin[c + d*x]] + (2*(20*a^4 - 1461*a^2*b^2 - 168*b^4)*EllipticPi[2, (-2*c + Pi
 - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/Sqrt[a + b*Sin[c + d*x]] - Sqrt[a + b*Sin[c +
d*x]]*((40*a^3 - 2202*a*b^2)*Cos[c + d*x] + 2*b*(-95*a*b*Cos[3*(c + d*x)] + 630*a^2*Cot[c + d*x] + (150*a^2 -
119*b^2 - 35*b^2*Cos[2*(c + d*x)])*Sin[2*(c + d*x)])))/(1260*b*d)

Maple [A] (verified)

Time = 39.88 (sec) , antiderivative size = 864, normalized size of antiderivative = 2.03

method result size
default \(-\frac {70 b^{6} \left (\cos ^{6}\left (d x +c \right )\right ) \sin \left (d x +c \right )+260 a \,b^{5} \left (\cos ^{6}\left (d x +c \right )\right )+\left (-340 a^{2} b^{4}+14 b^{6}\right ) \left (\cos ^{4}\left (d x +c \right )\right ) \sin \left (d x +c \right )+\left (-160 a^{3} b^{3}+232 a \,b^{5}\right ) \left (\cos ^{4}\left (d x +c \right )\right )+\left (10 a^{4} b^{2}+57 a^{2} b^{4}-84 b^{6}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+\left (475 a^{3} b^{3}-492 a \,b^{5}\right ) \left (\cos ^{2}\left (d x +c \right )\right )+\sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \left (1575 \Pi \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \frac {a -b}{a}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2} b^{4}-1575 \Pi \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \frac {a -b}{a}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{5}-20 E\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{6}-1669 E\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{4} b^{2}+1857 E\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2} b^{4}-168 E\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{6}+20 F\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{5} b +930 F\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{4} b^{2}+739 F\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3} b^{3}-2673 F\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2} b^{4}+816 F\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{5}+168 F\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{6}\right ) \sin \left (d x +c \right )}{315 \sin \left (d x +c \right ) b^{3} \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d}\) \(864\)

[In]

int(cos(d*x+c)^2*cot(d*x+c)^2*(a+b*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/315*(70*b^6*cos(d*x+c)^6*sin(d*x+c)+260*a*b^5*cos(d*x+c)^6+(-340*a^2*b^4+14*b^6)*cos(d*x+c)^4*sin(d*x+c)+(-
160*a^3*b^3+232*a*b^5)*cos(d*x+c)^4+(10*a^4*b^2+57*a^2*b^4-84*b^6)*cos(d*x+c)^2*sin(d*x+c)+(475*a^3*b^3-492*a*
b^5)*cos(d*x+c)^2+(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a-b)*sin(d*x+c)-
b/(a-b))^(1/2)*(1575*EllipticPi((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),(a-b)/a,((a-b)/(a+b))^(1/2))*a^2*b^4-1575*E
llipticPi((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),(a-b)/a,((a-b)/(a+b))^(1/2))*a*b^5-20*EllipticE((b/(a-b)*sin(d*x+
c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^6-1669*EllipticE((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/
2))*a^4*b^2+1857*EllipticE((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^4-168*EllipticE((b/(a
-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^6+20*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/
(a+b))^(1/2))*a^5*b+930*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b^2+739*Elliptic
F((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*b^3-2673*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^
(1/2),((a-b)/(a+b))^(1/2))*a^2*b^4+816*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a*b^5
+168*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^6)*sin(d*x+c))/sin(d*x+c)/b^3/cos(d*x
+c)/(a+b*sin(d*x+c))^(1/2)/d

Fricas [F]

\[ \int \cos ^2(c+d x) \cot ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\int { {\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{2} \cot \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(cos(d*x+c)^2*cot(d*x+c)^2*(a+b*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((2*a*b*cos(d*x + c)^2*cot(d*x + c)^2*sin(d*x + c) - (b^2*cos(d*x + c)^4 - (a^2 + b^2)*cos(d*x + c)^2)
*cot(d*x + c)^2)*sqrt(b*sin(d*x + c) + a), x)

Sympy [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) \cot ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**2*cot(d*x+c)**2*(a+b*sin(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^2(c+d x) \cot ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\int { {\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{2} \cot \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(cos(d*x+c)^2*cot(d*x+c)^2*(a+b*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*sin(d*x + c) + a)^(5/2)*cos(d*x + c)^2*cot(d*x + c)^2, x)

Giac [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) \cot ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^2*cot(d*x+c)^2*(a+b*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) \cot ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\int {\cos \left (c+d\,x\right )}^2\,{\mathrm {cot}\left (c+d\,x\right )}^2\,{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{5/2} \,d x \]

[In]

int(cos(c + d*x)^2*cot(c + d*x)^2*(a + b*sin(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^2*cot(c + d*x)^2*(a + b*sin(c + d*x))^(5/2), x)